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Probability distribution characteristics of chaos in a simple population model
and the Bonhoeffervan der Pol oscillator
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For a chaotic time serie§x,} of a simple discrete population model and the Bonhoeffer—van der Pol
oscillator, we consider k-step difference quantith X, =Xy, k— X - We study the dynamic behavior dfx, .
We show that nonstationary probability distributi®fAx,) occurs for “weak” chaos and stationary distri-
bution for “strong” chaos. Fon-band chaotic attractor switching betweaeanlasses of probability distributions
is observed. The connection between the degree of nonstationarity and the control parameter, Lyapunov
exponent, and correlation dimension is investigated. A power-law dependence is found.
[S1063-651%98)11110-9

PACS numbds): 05.45+b

A dynamical variable of chaotic systems can exhibit a Let{x,} (n=1,2,... N) be the time series of the expo-
Gaussian as well as a non-Gaussian type of probability disaential logistic model1) or the values of the variable of
tribution [1,2]. In deterministic diffusion the variance,,;  the BVP oscillator(2) in the Poincarenap. We consider the
—X, is of interest. Instead of looking at the probability dis- k-step difference quantitix, as
tribution of x,, andx,, 1—X,, in the present paper we con-
sider the probability distribution®(Ax,) (k=1,2,...) of AX= X4k~ Xm, ©)
AX=Xp4k—Xn- The connection betwedn(Ax,) of differ-
entk forms a probability associatidr8]. We investigate the
characteristics oP(Ax,) of chaotic attractors in a simple
discrete exponential logistic population growth moget 6]

wherem=1,2,... N’,N'<N—-k. We calculate the prob-
ability distribution of{Ax}. Let us consider two such prob-
ability distributionsP(Ax,) andP(Ax ), which need to be
compared. A natural way to compare the two probability

Xpye 1= F(X) =X X A(L—X)] (1) distributions is they? test. The test quantity is defined as
_ i i—S)?
and the Bonhoeffer—van der P@VP) oscillator[7] (ki) ;1 RTs @)
dx x3 dy
g X" g ytfeosQt, gr=c(x+a-by), (2)  whereR; andS; are the probabilities of thith interval for
P(Axy4;) and P(Ax,), respectively. In Eq.(4) intervals
WhereA a, b andc are constant parameters with R Si 0 are excluded. If the two probablllty distribu-

The most useful quantity to identify regular and chaotictions differ very much we get a largg? value. For two
motions is the spectrum of Lyapunov exponeh]$ For a similar distributions th@( value will be small.
regular motion, the largest Lyapunov exponent must be First we consider the exponential logistic mdp. Figure
negative. At least one positive Lyapunov exponent impliest shows the variation of the Lyapunov expongrds a func-
chaos. In the systemd) and(2) we show that a stationary
probability distribution P(Ax,) occurs for strong chaos ©-6
(characterized by a large positive Lyapunov exponantl a
nonstationary distribution for weak cha@haracterized by a
positive but small Lyapunov exponenThis kind of analysis
of probability distribution characteristics of chaotic oscilla-
tions can be regarded as a simple way of distinguishing dif- ¢ o
ferent forms of chaos and their geometric structure in eco:
logical data or biological time series where standard
dynamical systems theory techniques cannot be applied ea—©-3
ily.
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*Present address: International Center for Genetic Engineering
and Biotechnology, Area Science Park, Padriciano 99, [-34012 FIG. 1. Estimated Lyapunov exponextvs the control param-
Trieste, Italy. eter A for the exponential logistic mafd).
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FIG. 2. Numerically calculatedP(Ax,) (k
=2,4,6,501,502,503) for A=At

~2.692 368900 3. . .P is nonstationary.
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tion of A. The one-dimensional Lyapunov exponanof the
attractors of Eq(1) is estimated using the relation

N
A= lim 1 > Inj(1—Ax,)exd A(L—X,)]].

n=1

(5

N— oo

The value of\ is negative for regular motion and it is posi-
tive in the chaotic regions. When the paramefeis in-

&

A possible mechanism of nonstationary probability distri-
bution can be a recurrence of memory loss and recovery of
initial conditions[8,9]. The key to searching for memory
recovery is the value of the Lyapunov exponent. Chern and
Otsuka [10] applied information theory and a local
Lyapunov exponent to characterize the locally deforming na-
ture in chaos. Particularly, using self-information flow and
mutual information flow they have shown that memory re-
covery is possible for chaos with a very small positive

creased from a small value, a period-doubling route to chaosY2PUnov exponent. Thus the physical mechanism of the

is found [4]. The onset of chaos is observed At,;
~2.6923693003... InFig. 1 there are many regions la-

beled by an arrow, where the Lyapunov exponent is positive

but very small, which indicates that the systé¢m exhibits
weak chaos at these regions. The value® afre calculated
for various values oh.

In the numerical simulation we neglected first 5000 itera-

tions as transient and used the next itérations for analy-

sis. Figure 2 shows the evolution of probability distributions

P for k=2, 4, 6, 501, 502, and 503 of a critical’ &ttrac-
tor atA=A,; - From Fig. 2 it is evident tha® changes with

k. That is, the distribution is nonstationary. This is further

verified by numerically calculating? using Eq.(4) and is
plotted in Fig. 3. The analysis is carried fervalues up to
5000. The nondecreasing implies the nonstationary char-
acteristics ofP. In Eq. (1) nonstationanp is found for weak
chaos. As an example, fgx=3.102439 a chaotic attractor
with A=0.0082 is found and the calculated quantity is
nondecaying, implying a nonstationary probability distribu-
tion. Thus a complete probability distribution is impossible
for weak chaos.
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FIG. 3. x?(k,1) vsk for A=A .

nonstationary probability distribution is the recurrence of
memory loss and the recovery of initial conditidr&9).

A stationary probability distribution is found for strong
chaos. ForA=2.838 the Lyapunov exponent of the chaotic
attractor is 0.347. The calculatgd is plotted in Fig. 4. After
k=120 there is almost no change 3. In other words, the
motion is strongly chaotic and the distribution has evolved
into a stationary state. This suggests that the varigblean

be described as if it were generated by a random number
generator with a certain probability distribution. A possible
mechanism for stationary probability distribution is a com-
plete loss of memory of initial conditions.

As another example for stationaB/we consider a two-
band chaotic attractor. By two-band chaos we mean that in
thex, versusx,,, plane after transient evolution the iterated
values fall on two separate regions. In the exponential logis-
tic map (1) a two-band chaotic attractor is found for
A=2.832. Figure 5 showP for k=31, 32, 33, and 34. A
simple switching between two classes of probability distri-
butions can be seer?(k,1) andy?(k,2) are also calculated.
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FIG. 4. x*(k,1) vsk for A=2.838.
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FIG. 5. P(Ax,) (k=31,32,33,34) forA=2.832 (two-band -1.5¢
chaos. ol
e
0 o
x%(k,1) values are found to be large, whilé(k,2) values £ -25; %6
become almost zero for large values laf confirming the -3 o5
stationary characteristic of two different distribution patterns.
Further, nonstationarf occurs for a range of values of =3.5¢
the control parameter for which the Lyapunov exponent is 4
relatively small. We have investigated the dependence of the -45 -4 -35 -3 -25
degree of nonstationarity d® with the control parameter, InD

Lyapunov exponent, and correlation dimension. For this pur-

pose, we define the quanti§; the degree of nonstationarity

where x?(k;j) is given by Eq.(4). For strong chaosy?

S= lim

N—o

1 N
N2, XK,
k=1

FIG. 6. Variation ofS as a function of(a) u— ., (b) the
Lyapunov exponenk, and(c) the correlation dimensio® in the
In-In scale for the tent map. Circles represent numerical data and the
continuous line is the best straight line fit.

where n is a control parameter. Fge<0.5, x*=0 is a
stable fixed point. Chaotic motion occurs fa>0.5. From
the tent mag7) its Lyapunov exponent ix =In2u.

ThusA of the attractors of the tent map can be calculated

—0 for largek and hences=0. Sincey? does not decay to
zero for weak chaos in the limk—o, evidentlySis non-
zero. The magnitude & characterizes the degree of differ-
ent nonstationary probability distributiorSis calculated for

logistic and tent maps.

one-dimensional Lyapunov exponekt can be calculated found S~

analytically. The tent map is given by

without iterating the map equatidi). At u=u.=0.5, \ is
zero, while for u>0.5, N is positive. The nonstationary
probability distributionP is found for x near 0.5, while sta-
: _tionary P is observed for sufficiently large values of Fig-

a range of values of control parameters in the exponentigl . da) showsS versusp— . in the In-In scale. A power-

' , law variation of S with u— u. is observedS is found to
First, we present our result on the tent map for which theapproach zero with f— o)
C [

where « is a constant. We

0.0144(u— uc) ~ % Figure @b) depicts the varia-
tion of Swith \. We note that a3 increasesS decays to

zero. That is, a transition from nonstationdyto stationary

0.0=x<0.5
0.5<x<1.0, (7

Xn s

Xn+1= 2 X 1—X,,

P occurs as\ increases from zer&is found to scale with
asS~0.0206. %73 Further, the correlation dimensid@ of
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FIG. 8. x?(k,1) vsk for the BVP oscillator(2) with f=1.0919

the attractor of the tent map is calculated by employing the'Veak chaos

Grassberger-Procacdial] algorithm. Figure &) shows the  gecay to zero akincreases. For a twafour-) band attractor
InS versus InD plot. Here again the quantitg is found to  simple switching between twdour) different classes P is
exhibit a power-law dependence onD (S found.
~0.0043 104§, In the present work we have studied the characteristics of
We have calculated the quantiB/for the exponential lo- the probability distributiorP of chaotic attractors of the ex-
gistic map (1). For A values slightly above A, ponential logistic magl) and the BVP oscillatof2), which
~2.916 100 448 periodic motion occurs withbeing nega- are of ecologically and biologically important systems, re-
tive. At A=A;, A~0. NonstationaryP is observed forA  spectively. A stationary probability distribution is found for
values just belowA. . Figures 7a) and 7b) depict the varia- ~chaotic attractors with a large positive Lyapunov exponent,
tion of Sas a function ofA,— A andX in the In-In scale. A Which corresponds to strong chaos. A nonstationary prob-
power-law dependence &on A.—A and\ is clearly seen. ability distribution is found to occur for chaotic attractors
Finally, we have also investigated the probability distri-W'th sufficiently small positive Lyapunov ex.ponent, which is
bution in the BVP oscillatof2). Here thex values collected '€lated to weak chaos. We have also studied the dependence
at t=27n/Q (n=12,...) areused for analysis. We of the degree of nonstationari§on the Lyapunov exponent,

present part of the results in terms@. Figure 8 shows? correlation dimension, and control parameteilis found to
as a function ofk for f=1.0919 azd 7 b=08. c=01  approach zero as these quantities increase. A power-law

and ()= 1.0, where the systeit2) exhibits weak chaos. The variatit_)n ofSis foqnd. T'he. abpve study sugggsts that the

corresponding Lyapunov exponent value is approximatel)?nalys's of probabll_lty qllstrlbutlon characteristics of ch_aps

equal to 0.0004. The nondecreasig clearly indicates the can be used to distinguish _Weak_and strong chaos exhibited
nonstationary probability distributions. We have numericallyby the systems under consideration.

calculatedy? for one-, two-, and four-band chaotic attrac-  The work of S.R. was supported by the Department of

tors. For two-band and four-band chaotic attractgték,1) Science and Technology, Government of India, through a
values are largénot shown here However, for two-band young scientist project. S.P. thanks Professor M. Laksh-
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