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Probability distribution characteristics of chaos in a simple population model
and the Bonhoeffer–van der Pol oscillator
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For a chaotic time series$xn% of a simple discrete population model and the Bonhoeffer–van der Pol
oscillator, we consider ak-step difference quantityDxk5xm1k2xm . We study the dynamic behavior ofDxk .
We show that nonstationary probability distributionP(Dxk) occurs for ‘‘weak’’ chaos and stationary distri-
bution for ‘‘strong’’ chaos. Forn-band chaotic attractor switching betweenn classes of probability distributions
is observed. The connection between the degree of nonstationarity and the control parameter, Lyapunov
exponent, and correlation dimension is investigated. A power-law dependence is found.
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A dynamical variable of chaotic systems can exhibit
Gaussian as well as a non-Gaussian type of probability
tribution @1,2#. In deterministic diffusion the variancexn11
2xn is of interest. Instead of looking at the probability di
tribution of xn andxn112xn , in the present paper we con
sider the probability distributionsP(Dxk) (k51,2, . . . ) of
Dxk5xn1k2xn . The connection betweenP(Dxk) of differ-
ent k forms a probability association@3#. We investigate the
characteristics ofP(Dxk) of chaotic attractors in a simpl
discrete exponential logistic population growth model@4–6#

xn115 f ~xn!5xnexp@A~12xn!# ~1!

and the Bonhoeffer–van der Pol~BVP! oscillator @7#

dx

dt
5x2

x3

3
2y1 f cosVt,

dy

dt
5c~x1a2by!, ~2!

whereA, a, b, andc are constant parameters.
The most useful quantity to identify regular and chao

motions is the spectrum of Lyapunov exponents@1#. For a
regular motion, the largest Lyapunov exponent must
negative. At least one positive Lyapunov exponent impl
chaos. In the systems~1! and ~2! we show that a stationar
probability distribution P(Dxk) occurs for strong chao
~characterized by a large positive Lyapunov exponent! and a
nonstationary distribution for weak chaos~characterized by a
positive but small Lyapunov exponent!. This kind of analysis
of probability distribution characteristics of chaotic oscill
tions can be regarded as a simple way of distinguishing
ferent forms of chaos and their geometric structure in e
logical data or biological time series where standa
dynamical systems theory techniques cannot be applied
ily.

*Present address: International Center for Genetic Enginee
and Biotechnology, Area Science Park, Padriciano 99, I-34
Trieste, Italy.
PRE 581063-651X/98/58~5!/6839~4!/$15.00
s-

e
s

f-
-

d
as-

Let $xn% (n51,2, . . . ,N) be the time series of the expo
nential logistic model~1! or the values of the variablex of
the BVP oscillator~2! in the Poincare´ map. We consider the
k-step difference quantityDxk as

Dxk5xm1k2xm , ~3!

where m51,2, . . . ,N8,N8<N2k. We calculate the prob-
ability distribution of$Dxk%. Let us consider two such prob
ability distributionsP(Dxk) andP(Dxk1 j ), which need to be
compared. A natural way to compare the two probabil
distributions is thex2 test. The test quantity is defined as

x2~k; j !5(
i 51

M
~Ri2Si !

2

Ri1Si
, ~4!

whereRi and Si are the probabilities of thei th interval for
P(Dxk1 j ) and P(Dxk), respectively. In Eq.~4! intervals
with Ri5Si50 are excluded. If the two probability distribu
tions differ very much we get a largex2 value. For two
similar distributions thex2 value will be small.

First we consider the exponential logistic map~1!. Figure
1 shows the variation of the Lyapunov exponentl as a func-

ng
2 FIG. 1. Estimated Lyapunov exponentl vs the control param-
eterA for the exponential logistic map~1!.
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FIG. 2. Numerically calculatedP(Dxk) (k
52,4,6,501,502,503) for A5Acrit

'2.692 368 900 3. . . .P is nonstationary.
i-

a

-
tiv

ra

ns

e

-

r

u
le

ri-
y of
y
nd
l

na-
nd
e-
ve
the
of

g
tic

ed

ber
le
-

t in
d
is-
r

tri-
.

tion of A. The one-dimensional Lyapunov exponentl of the
attractors of Eq.~1! is estimated using the relation

l5 lim
N→`

1

N (
n51

N

lnu~12Axn!exp@A~12xn!#u. ~5!

The value ofl is negative for regular motion and it is pos
tive in the chaotic regions. When the parameterA is in-
creased from a small value, a period-doubling route to ch
is found @4#. The onset of chaos is observed atAcrit
'2.692 369 300 3. . . . In Fig. 1 there are many regions la
beled by an arrow, where the Lyapunov exponent is posi
but very small, which indicates that the system~1! exhibits
weak chaos at these regions. The values ofP are calculated
for various values ofl.

In the numerical simulation we neglected first 5000 ite
tions as transient and used the next 104 iterations for analy-
sis. Figure 2 shows the evolution of probability distributio
P for k52, 4, 6, 501, 502, and 503 of a critical 2` attrac-
tor atA5Acrit . From Fig. 2 it is evident thatP changes with
k. That is, the distribution is nonstationary. This is furth
verified by numerically calculatingx2 using Eq.~4! and is
plotted in Fig. 3. The analysis is carried fork values up to
5000. The nondecreasingx2 implies the nonstationary char
acteristics ofP. In Eq. ~1! nonstationaryP is found for weak
chaos. As an example, forA53.102 439 a chaotic attracto
with l50.0082 is found and the calculatedx2 quantity is
nondecaying, implying a nonstationary probability distrib
tion. Thus a complete probability distribution is impossib
for weak chaos.

FIG. 3. x2(k,1) vsk for A5Acrit .
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A possible mechanism of nonstationary probability dist
bution can be a recurrence of memory loss and recover
initial conditions @8,9#. The key to searching for memor
recovery is the value of the Lyapunov exponent. Chern a
Otsuka @10# applied information theory and a loca
Lyapunov exponent to characterize the locally deforming
ture in chaos. Particularly, using self-information flow a
mutual information flow they have shown that memory r
covery is possible for chaos with a very small positi
Lyapunov exponent. Thus the physical mechanism of
nonstationary probability distribution is the recurrence
memory loss and the recovery of initial conditions@8,9#.

A stationary probability distribution is found for stron
chaos. ForA52.838 the Lyapunov exponent of the chao
attractor is 0.347. The calculatedx2 is plotted in Fig. 4. After
k5120 there is almost no change inx2. In other words, the
motion is strongly chaotic and the distribution has evolv
into a stationary state. This suggests that the variablexn can
be described as if it were generated by a random num
generator with a certain probability distribution. A possib
mechanism for stationary probability distribution is a com
plete loss of memory of initial conditions.

As another example for stationaryP we consider a two-
band chaotic attractor. By two-band chaos we mean tha
thexn versusxn11 plane after transient evolution the iterate
values fall on two separate regions. In the exponential log
tic map ~1! a two-band chaotic attractor is found fo
A52.832. Figure 5 showsP for k531, 32, 33, and 34. A
simple switching between two classes of probability dis
butions can be seen.x2(k,1) andx2(k,2) are also calculated

FIG. 4. x2(k,1) vsk for A52.838.
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x2(k,1) values are found to be large, whilex2(k,2) values
become almost zero for large values ofk, confirming the
stationary characteristic of two different distribution patter

Further, nonstationaryP occurs for a range of values o
the control parameter for which the Lyapunov exponen
relatively small. We have investigated the dependence of
degree of nonstationarity ofP with the control parameter
Lyapunov exponent, and correlation dimension. For this p
pose, we define the quantityS, the degree of nonstationarit
of P(Dxk), as

S5 lim
N→`

1

N(
k51

N

x2~k; j !, ~6!

where x2(k; j ) is given by Eq.~4!. For strong chaos,x2

→0 for largek and henceS50. Sincex2 does not decay to
zero for weak chaos in the limitk→`, evidentlyS is non-
zero. The magnitude ofS characterizes the degree of diffe
ent nonstationary probability distributions.S is calculated for
a range of values of control parameters in the exponen
logistic and tent maps.

First, we present our result on the tent map for which
one-dimensional Lyapunov exponentl can be calculated
analytically. The tent map is given by

xn1152m3H xn , 0.0<x,0.5

12xn , 0.5<x<1.0, ~7!

FIG. 5. P(Dxk) (k531,32,33,34) for A52.832 ~two-band
chaos!.
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where m is a control parameter. Form<0.5, x* 50 is a
stable fixed point. Chaotic motion occurs form.0.5. From
the tent map~7! its Lyapunov exponent isl5 ln 2m.

Thusl of the attractors of the tent map can be calcula
without iterating the map equation~7!. At m5mc50.5, l is
zero, while for m.0.5, l is positive. The nonstationary
probability distributionP is found form near 0.5, while sta-
tionary P is observed for sufficiently large values ofm. Fig-
ure 6~a! showsS versusm2mc in the ln-ln scale. A power-
law variation of S with m2mc is observed.S is found to
approach zero with (m2mc)

a, wherea is a constant. We
foundS'0.0144(m2mc)

20.69. Figure 6~b! depicts the varia-
tion of S with l. We note that asl increasesS decays to
zero. That is, a transition from nonstationaryP to stationary
P occurs asl increases from zero.S is found to scale withl
asS'0.0206l20.73. Further, the correlation dimensionD of

FIG. 6. Variation of S as a function of~a! m2mc , ~b! the
Lyapunov exponentl, and ~c! the correlation dimensionD in the
ln-ln scale for the tent map. Circles represent numerical data and
continuous line is the best straight line fit.
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the attractor of the tent map is calculated by employing
Grassberger-Procaccia@11# algorithm. Figure 6~c! shows the
ln S versus lnD plot. Here again the quantityS is found to
exhibit a power-law dependence on D (S
'0.0043D21.048).

We have calculated the quantityS for the exponential lo-
gistic map ~1!. For A values slightly above Ac
'2.916 100 448 periodic motion occurs withl being nega-
tive. At A5Ac , l'0. NonstationaryP is observed forA
values just belowAc . Figures 7~a! and 7~b! depict the varia-
tion of S as a function ofAc2A andl in the ln-ln scale. A
power-law dependence ofS on Ac2A andl is clearly seen.

Finally, we have also investigated the probability dist
bution in the BVP oscillator~2!. Here thex values collected
at t52pn/V (n51,2, . . . ) are used for analysis. We
present part of the results in terms ofx2. Figure 8 showsx2

as a function ofk for f 51.0919, a50.7, b50.8, c50.1,
andV51.0, where the system~2! exhibits weak chaos. The
corresponding Lyapunov exponent value is approxima
equal to 0.0004. The nondecreasingx2 clearly indicates the
nonstationary probability distributions. We have numerica
calculatedx2 for one-, two-, and four-band chaotic attra
tors. For two-band and four-band chaotic attractorsx2(k,1)
values are large~not shown here!. However, for two-band
and four-band attractorsx2(k,2) andx2(k,4), respectively,

FIG. 7. ~a! S vs Ac2A and ~b! S vs l in the ln-ln scale for the
exponential logistic map whereAc52.916 100 48 . . . . We found
S50.838(Ac2A)20.45531025 andS50.0255l20.936.
o
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decay to zero ask increases. For a two-~four-! band attractor
simple switching between two~four! different classes ofP is
found.

In the present work we have studied the characteristic
the probability distributionP of chaotic attractors of the ex
ponential logistic map~1! and the BVP oscillator~2!, which
are of ecologically and biologically important systems, r
spectively. A stationary probability distribution is found fo
chaotic attractors with a large positive Lyapunov expone
which corresponds to strong chaos. A nonstationary pr
ability distribution is found to occur for chaotic attracto
with sufficiently small positive Lyapunov exponent, which
related to weak chaos. We have also studied the depend
of the degree of nonstationaritySon the Lyapunov exponent
correlation dimension, and control parameter.S is found to
approach zero as these quantities increase. A power
variation of S is found. The above study suggests that t
analysis of probability distribution characteristics of cha
can be used to distinguish weak and strong chaos exhib
by the systems under consideration.
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FIG. 8. x2(k,1) vsk for the BVP oscillator~2! with f 51.0919
~weak chaos!.
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